Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 82: 238-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401747

RESUMO

Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.


Assuntos
Diamino Aminoácidos , Halomonas , Halomonas/genética , Diamino Aminoácidos/genética , Antibacterianos , Biopolímeros
2.
Food Chem X ; 20: 100925, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144717

RESUMO

Noni fruits have gained considerable popularity as dietary supplements. However, the major constituents, the laxative activity, and the toxicity of Noni fruit remains still unknown. The purpose of the present study was, therefore, to analyze the constituents of methanol extract of Noni fruit by UPLC-MS, and further evaluate laxative activity and safety aspects of this Noni fruit-derived products in mice. UPLC-MS analysis identified eleven major constituents from this Noni fruit extract. Administration of this extract obviously shortened the time of first fecal excrement, significantly increased the total number and the weight of stools, and remarkably restored the intestinal transit to normal level in the constipated mice, with low toxicity to liver and kidney, and meanwhile, the abundance, composition, and function of gut microbiota remained homeostasis. These results revealed the laxative activity of the methanol extract of Noni fruit with low toxicity and no influence on gut microbiota.

3.
Microb Cell Fact ; 18(1): 184, 2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31655591

RESUMO

BACKGROUND: As an attracted compatible solute, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) showed great potentials in various field. However, lower productivity and high saline medium seriously hinder its wide applications. RESULTS: The entire ectoine metabolism, including pathways for ectoine synthesis and catabolism, was identified in the genome of an ectoine-excreting strain Halomonas hydrothermalis Y2. By in-frame deletion of genes encoding ectoine hydroxylase (EctD) and (or) ectoine hydrolase (DoeA) that responsible for ectoine catabolism, the pathways for ectoine utilization were disrupted and resulted in an obviously enhanced productivity. Using an optimized medium containing 100 g L-1 NaCl in a 500-mL flask, the double mutant of Y2/ΔectD/ΔdoeA synthesized 3.13 g L-1 ectoine after 30 h cultivation. This is much higher than that of the wild type strain (1.91 g L-1), and also exceeds the production of Y2/ΔectD (2.21 g L-1). The remarkably enhanced accumulation of ectoine by Y2/ΔectD/ΔdoeA implied a critical function of Doe pathway in the ectoine catabolism. Furthermore, to reduce the salinity of fermentation medium and overcome the wastewater treatment difficulty, mutants that lacking key Na+/H+ antiporter, Mrp and (or) NhaD2, were constructed based on strain Y2/ΔectD/ΔdoeA. As a result, the Mrp-deficient strain could synthesize equal amount of ectoine (around 7 g L-1 or 500 mg (g DCW) -1) in the medium containing lower concentration of NaCl. During a fed-batch fermentation process with 60 g L-1 NaCl stress, a maximum 10.5 g L-1 ectoine was accumulated by the Mrp-deficient strain, with a specific production of 765 mg (g DCW)-1 and a yield of 0.21 g g-1 monosodium glutamate. CONCLUSION: The remarkably enhanced production of ectoine by Y2/ΔectD/ΔdoeA implied the critical function of Doe pathway in the ectoine catabolism. Moreover, the reduced salinity requirement of Mrp-deficient strain implied a feasible protocol for many compatible solute biosynthesis, i.e., by silencing some Na+/H+ antiporters in their halophilic producers and thus lowering the medium salinity.


Assuntos
Diamino Aminoácidos/biossíntese , Proteínas de Bactérias/metabolismo , Halomonas/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Fermentação , Salinidade , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...